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Abstract. Motivated by a 1993 conjecture of Stanley and Stembridge, Shareshian
and Wachs conjectured that the characteristic map takes the dot action of the symmet-
ric group on the cohomology of a regular semisimple Hessenberg variety to ωXG(t),
where XG(t) is the chromatic quasisymmetric function of the incomparability graph G
of the corresponding natural unit interval order, and ω is the usual involution on
symmetric functions. We prove the Shareshian–Wachs conjecture. Our proof uses
the local invariant cycle theorem of Beilinson–Bernstein–Deligne to obtain a surjection
from the cohomology of a regular Hessenberg variety of Jordan type λ to a space of
local invariant cycles; as λ ranges over all partitions, these spaces collectively contain
all the information about the dot action on a regular semisimple Hessenberg variety.
Using a palindromicity argument, we show that in our case the surjections are actu-
ally isomorphisms, thus reducing the Shareshian–Wachs conjecture to computing the
cohomology of a regular Hessenberg variety. But this cohomology has already been
described combinatorially by Tymoczko; we give a bijective proof (using a generaliza-
tion of a combinatorial reciprocity theorem of Chow) that Tymoczko’s combinatorial
description coincides with the combinatorics of the chromatic quasisymmetric func-
tion.

Keywords: chromatic quasisymmetric function, indifference graph, local invariant cy-
cles, palindromic

1 Introduction

Let G be the incomparability graph of a unit interval order (also known as an indiffer-
ence graph), i.e., a finite graph whose vertices are closed unit intervals on the real line,
and whose edges join overlapping unit intervals. It is a longstanding conjecture [16]
related to various deep conjectures about immanants that if G is such a graph, then
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the so-called chromatic symmetric function XG studied by Stanley [17] is e-positive, i.e., a
nonnegative combination of elementary symmetric functions. (In fact, Stanley and Stem-
bridge conjectured something seemingly more general, but Guay-Paquet [8] has reduced
their conjecture to the one stated here.) Early on, Haiman [10] proved that the expansion
of XG in terms of Schur functions has nonnegative coefficients, and Gasharov [6] showed
that these coefficients enumerate certain combinatorial objects known as P-tableaux. It is
well known that if χ is a character of the symmetric group Sn, then the image of χ under
the so-called characteristic map ch

ch χ :=
1
n! ∑

σ∈Sn

χ(σ) pcycletype(σ) (1.1)

(where p here denotes the power-sum symmetric function) is a nonnegative linear com-
bination of Schur functions, with the coefficients giving the multiplicities of the corre-
sponding irreducible characters of Sn. One may therefore suspect that XG is the image
under ch of the character of some naturally occurring representation of Sn, but until
recently, there was no candidate, even conjecturally, for such a representation.

Meanwhile, independently and seemingly unrelatedly, De Mari, Procesi, and Shay-
man [5] inaugurated the study of Hessenberg varieties. Let m = (m1, m2, . . . , mn−1) be a
weakly increasing sequence of positive integers satisfying i ≤ mi ≤ n for all i, and let
s : Cn → Cn be a linear transformation. The (type A) Hessenberg variety H (m, s) is
defined by

H (m, s) := {complete flags F1 ⊆ F2 ⊆ · · · ⊆ Fn : sFi ⊆ Fmi for all i}. (1.2)

The geometry of a Hessenberg variety depends on the Jordan form of s. If the Jordan
blocks have distinct eigenvalues then we say that H (m, s) is regular, and if s is diago-
nalizable then we say that H (m, s) is semisimple. Of particular interest to us is that there
is a representation, called the dot action, of Sn on the cohomology of regular semisimple
Hessenberg varieties. To the best of our knowledge, this dot action was first defined by
Tymoczko, who asked for a complete description of it [20]; e.g., one can ask if there is a
combinatorial formula for the multiplicities of the irreducible representations and/or for
the character values. (Note that Tymoczko defines the dot action in terms of something
called the moment graph; the moment graph, and hence the dot action, depends only
on m and not on the choice of regular semisimple s.)

A connection between these two apparently unrelated topics has been conjectured
by Shareshian and Wachs [12, 13]. Motivated by the e-positivity conjecture, they have
generalized XG to something they call the chromatic quasisymmetric function XG(t) of a
graph, which is a polynomial in t with power series coefficients that reduces to XG when
t = 1. They also noted that if we are given a sequence m as above, and we let G(m)
be the undirected graph on the vertex set {1, 2, . . . , n} such that i and j are adjacent if
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i < j ≤ mi, then G(m) is an indifference graph, and moreover that every indifference
graph is isomorphic to some G(m). They then made the following conjecture. Let ω

denote the usual involution on symmetric functions [15, Section 7.6].

Conjecture 1. If χm,d denotes the dot action on the cohomology group H2d of the regular
semisimple Hessenberg variety H (m, s), then ch χm,d equals the coefficient of td in ωXG(m)(t).

This conjecture is intriguing not only because it would answer Tymoczko’s question,
but it would open up the possibility of proving the e-positivity conjecture by geometric
techniques.

The main result of the present paper is a proof of Conjecture 1. The linchpin of our
proof is the following result.

Theorem 1. Let λ be a partition of n. Let s be a regular element with Jordan type λ, and let
Sλ := Sλ1 × · · · × Sλ`

be a Young subgroup of the symmetric group Sn. Consider the restriction
of χm,d to Sλ. Then the dimension of the subspace fixed by Sλ equals the Betti number β2d of
H (m, s).

It is a standard fact (Proposition 1 below) from the representation theory of Sn that
the dimension of the subspace fixed by Sλ in a representation χ is the coefficient of mλ

in the monomial symmetric function expansion of ch χ, and therefore these dimensions
completely determine χ. So Theorem 1 reduces the computation of the dot action on
the cohomology of a regular semisimple Hessenberg variety to the computation of the
cohomology of regular (but not necessarily semisimple) Hessenberg varieties. However,
this latter task has already been largely carried out by Tymoczko [19], who has given a
combinatorial description of the Betti numbers β2d for all Hessenberg varieties in type A.
So with Theorem 1 in hand, all that remains to prove Conjecture 1 is to give a bijection
between Tymoczko’s combinatorial description and the combinatorics of ωXG(m)(t). To
do this, we first compute the coefficients cd,λ(m) of tdmλ in the monomial symmetric
function expansion of ωXG(m)(t). We do this with a generalization of a combinatorial
reciprocity theorem of Chow (Theorem 2). This yields a description of cd,λ(m) that is
almost, but not quite, identical to Tymoczko’s description of β2d; we show that the de-
scriptions are equivalent by describing a explicit bijection between the two (Theorem 4).
As a corollary (Corollary 2), we derive the fact that the Betti numbers of regular Hessen-
berg varieties form a palindromic sequence (even though the varieties are not smooth),
because Shareshian and Wachs have proved that ωXG(m)(t) is palindromic.

In this extended abstract, we give complete definitions and theorem statements (with-
out proofs, which of course are in the full version) of the combinatorial ingredients de-
scribed above. There is no space to provide details of the geometric ingredients, or even
a complete definition of the dot action, so we limit ourselves to the following brief com-
ments about the proof of Theorem 1. The idea is to show that Tymoczko’s dot action
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coincides with the monodromy action for the family H rs(m)→ grs of Hessenberg vari-
eties over the space of regular semisimple n× n matrices. This allows us to apply results
from the theory of local systems and perverse sheaves to questions involving the dot
action. In particular, the local invariant cycle theorem of Beilinson–Bernstein–Deligne
[3, Corollaire 6.2.9] implies that there is a surjective map from the cohomology of a reg-
ular Hessenberg variety to the space of local invariants of the monodromy action near
a regular element s in the space g of all n × n-matrices. We prove a general theorem
showing that the local invariant cycle map is an isomorphism if and only if the Betti
numbers of the special fiber are palindromic in a suitable sense; but the Betti numbers
are palindromic in our case (by Corollary 2), so the local invariant cycle map is indeed
an isomorphism in our case. Then we show that the local invariant cycles near a regular
element s with Jordan type λ coincide with Sλ invariants of the dot action on the regular
semisimple Hessenberg variety. The latter fact is proved by a monodromy argument that
uses the Kostant section. (This Kostant section argument and some other ingredients of
the proof were inspired by Ngô’s paper on the Hitchin fibration [11].)

1.1 Previous work and acknowledgments

Prior to our work, Conjecture 1 was already known for some graphs G: a complete
graph (trivial), a complete graph minus an edge [18], a complete graph minus a path
of length three (Tymoczko, unpublished), and a path (by piecing together known re-
sults as explained in [13]). Teff also showed that it would suffice to prove the conjecture
for all connected graphs G. In a different direction, Abe, Harada, Horiguchi and Ma-
suda [2] proved that the multiplicity of the trivial representation is indeed as predicted
by Conjecture 1. (Hearing about this development and reading the last paragraph of [1],
which explains how to compute the multiplicity of the trivial representation in terms
of the regular nilpotent Hessenberg variety, partially inspired our own proof.) They
also computed the ring structure on regular semisimple Hessenberg varieties of type
(m1, n, . . . , n), and deduced Conjecture 1 in that case from the computation.

Shortly after this work was completed, Guay–Paquet [9] announced an independent
proof of Conjecture 1 using completely different methods.

Brosnan would like to thank Jim Carrell for discussions about Hessenberg varieties
and equivariant cohomology and Mark Goresky for mentioning Springer’s Bourbaki
article [14], which helped convince us to look for a description of Tymoczko’s dot action
in terms of monodromy. He would also like to thank Najmuddin Fakhruddin and Nero
Budur for suggestions about relevant literature, and Tom Haines for discussions about
Grothendieck’s simultaneous resolution. Finally, he thanks the Institute for Advanced
Study for hospitality in Princeton, NJ during the Fall of 2014 when this work started.
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2 Preliminaries

We fix some notation that will be used throughout the paper.

2.1 General notation

We let P denote the positive integers. If n ∈ P, we let [n] denote the set {1, 2, . . . , n}.
The vector m = (m1, . . . , mn−1) will always denote a Hessenberg function, by which we

mean a sequence of positive integers satisfying

1. m1 ≤ m2 ≤ · · · ≤ mn−1 ≤ n, and

2. mi ≥ i for all i.

We also define

|m| :=
n−1

∑
i=1

(mi − i). (2.1)

Given m, let P(m) be the poset on the vertex set [n] whose order relation ≺ is given by

i ≺ j⇐⇒ j ∈ {mi + 1, mi + 2, . . . , n}.

Such a poset is called a natural unit interval order. (It is a theorem that every unit interval
order in the sense defined in the introduction is isomorphic to some natural unit interval
order.) The incomparability graph G(m) is the undirected graph on the vertex set [n] in
which i and j are adjacent if and only if i and j are incomparable in P(m). In other
words, if i < j then i and j are adjacent in G(m) if and only if j ≤ mi.

An integer partition λ = (λ1, λ2, . . . , λ`) of a positive integer n is a weakly decreasing
sequence of positive integers that sum to n, while a composition α = (α1, α2, . . . , α`) of
a positive integer n is any sequence of positive integers that sum to n. We visualize a
composition of n by drawing vertical bars in some subset of the n− 1 spaces between
consecutive objects in a horizontal line of n objects; the parts αi are then the numbers
of objects between successive bars. Motivated by the equivalence between compositions
and sets of bars, we define the following (possibly not quite standard) notation: |α| for
the number of bars of α; α for the composition that has bars in precisely the positions
where α does not have bars; and α ≤ β if the bars of α are a subset of the bars of β.

We write Sn for the symmetric group. If Sn acts in the usual way on a set of size n,
and α is a composition of n, then the Young subgroup Sα is the subgroup

Sα1 × Sα2 × · · · × Sα` ⊆ Sn (2.2)

comprising all the permutations that permute the first α1 elements among themselves,
the next α2 elements among themselves, and so on.
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An ordered (set) partition σ = (σ1, σ2, . . . , σ`) of a finite set S is a sequence of pairwise
disjoint subsets of S whose union is S.

A sequencing q of a finite set S of cardinality n is a bijective map q : [n] → S. It is
helpful to think of q as the sequence q(1), . . . , q(n) of elements of S.

By a digraph we mean a finite directed graph with no loops or multiple edges but that
may have bidirected edges, i.e., it may contain both u→ v and v→ u simultaneously. If
D is a digraph, we write D for the complement of D, i.e., the digraph with the same vertex
set as D but with a directed edge u → v if and only if there does not exist a directed
edge u→ v in D.

2.2 Symmetric and quasisymmetric functions

We mostly follow the notation of Stanley [15] for symmetric functions. For convenience,
we recall some of that notation here. Let x = {x1, x2, x3, . . .} be a countable set of
independent indeterminates. If κ : [n] → P is a map then we write xκ for the monomial
xκ(1)xκ(2) · · · xκ(n). A formal power series in x is a symmetric function if it is invariant
under any permutation of the variables x. If λ = (λ1, λ2, . . . , λ`) is an integer partition,
then the monomial symmetric function mλ is the symmetric function of minimal support
that contains the monomial xλ1

1 xλ2
2 · · · x

λ`
` .

The characteristic map ch is a function that sends characters χ of the symmetric group
to symmetric functions via the formula

ch χ :=
1
n! ∑

σ∈Sn

χ(σ) pcycletype(σ) (2.3)

where cycletype(σ) is the integer partition consisting of the cycle sizes of σ, listed with
multiplicity in weakly decreasing order, and p denotes the power-sum symmetric func-
tion. As we explained in the introduction, the following standard fact is an important
ingredient in our proof.

Proposition 1. Let ρ be a finite-dimensional representation of Sn, and let χ be its character. Let
ch χ = ∑λ cλmλ be the monomial symmetric function expansion of ch χ. Then cλ equals the
dimension of the subspace fixed by any Young subgroup Sλ ⊆ Sn. In particular, knowing cλ for
all λ uniquely determines χ.

Let α = (α1, α2, . . . , α`) be a composition of n. The monomial quasisymmetric function
Mα is the formal power series defined by

Mα := ∑
i1<···<i`

xα1
i1
· · · xα`

i`
, (2.4)

where the sum is over all strictly increasing sequences (i1, . . . , i`) of positive integers.
A formal power series is a quasisymmetric function if it is a scalar linear combination of
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monomial quasisymmetric functions. Note that symmetric functions are always qua-
sisymmetric, but not vice versa.

The fundamental quasisymmetric function Fα of Gessel [7] is defined by

Fα := ∑
β≥α

Mβ. (2.5)

By inclusion-exclusion,
Mα = ∑

β≥α

(−1)|β|−|α|Fβ. (2.6)

2.3 Hessenberg varieties

As mentioned in the introduction, if m is a Hessenberg function and s : Cn → Cn is a
linear transformation, then we define the Hessenberg variety (of type A, which is the only
type that we consider in this paper) by

H (m, s) := {complete flags F1 ⊆ F2 ⊆ · · · ⊆ Fn : sFi ⊆ Fmi for all i}.

If the Jordan blocks of s have distinct eigenvalues then we say that H (m, s) is regular, if
s is diagonalizable then we say that H (m, s) is semisimple, and if s is nilpotent then we
say that H (m, s) is nilpotent. Since H (m, s) can equal H (m, s′) for s 6= s′ (e.g., if s′ − s
is a constant), this is a very minor abuse of terminology.

Hessenberg varieties are projective as they are closed subschemes of the projective
variety of complete flags. If s is regular semisimple then they are smooth, but in general
they may be singular, and sometimes not reduced. This explains why we cannot simply
cite a duality theorem to prove palindromicity.

3 The chromatic quasisymmetric function

Given a graph G whose vertex set is a subset of P, Shareshian and Wachs [13] define the
chromatic quasisymmetric function XG(x, t) of G.

Definition 1. Let G be a graph whose vertex set V is a finite subset of P. Let C(G) denote the
set of all proper colorings of G, i.e., the set of all maps κ : V → P such that adjacent vertices are
always mapped to distinct positive integers. Then

XG(x, t) := ∑
κ∈C(G)

tasc κ xκ, (3.1)

where
asc κ := |{{u, v} : {u, v} is an edge of G and u < v and κ(u) < κ(v)}| .
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For brevity, we sometimes write XG(t) for XG(x, t). It will be convenient for us to
restate the definition of XG(t) in terms of monomial quasisymmetric functions.

Proposition 2. Let G be a graph whose vertex set V is a finite subset of P. Then

XG(x, t) = ∑
σ=(σ1,...,σ`)

tasc σ M|σ1|,...,|σ`|, (3.2)

where the sum is over all ordered partitions σ of V such that every σi is a stable set of G (i.e.,
there is no edge between any two vertices of σi), and asc σ is the number of edges {u, v} of G
such that u < v and v appears in a later part of σ than u does.

We remark that if we set t = 1 then the chromatic quasisymmetric function specializes
to the chromatic symmetric function XG of Stanley [17].

3.1 Reciprocity

If f is a symmetric function, then a “reciprocity theorem,” loosely speaking, is a result
that gives a combinatorial interpretation of ω f , where ω is a well-known involution
on symmetric functions [15, Section 7.6]. Since Conjecture 1 concerns ωXG(t) rather
than XG(t) itself, one might expect a reciprocity theorem to be relevant. This is indeed
the case. Specifically, the coefficients of the monomial symmetric function expansion of
ωXG(t) play an important role in our arguments, so we now introduce some notation
for them.

Definition 2. Given a Hessenberg function m, we let cd,λ(m) be the coefficients defined by the
following expansion of ωXG(m)(x, t) in terms of monomial symmetric functions:

ωXG(m)(x, t) = ∑
d

td ∑
λ

cd,λ(m)mλ. (3.3)

Our starting point is the observation that Chow [4, Theorem 1] has proved a reci-
procity theorem for a symmetric function invariant of a digraph called the path-cycle
symmetric function ΞD. There is a certain precise sense in which ΞD is equivalent to
Stanley’s XG in the case of posets, but the nice thing about reciprocity for ΞD is that
it naturally yields a combinatorial interpretation for the coefficients of the monomial
symmetric function expansion of ωΞD, which is not immediately evident from Stanley’s
reciprocity theorem [17, Theorem 4.2] for XG. This fact suggests the following plan: Gen-
eralize ΞD to ΞD(t) (just as Shareshian and Wachs have generalized XG to XG(t)), prove
reciprocity for ΞD(t), and read off the desired combinatorial interpretation of cd,λ(m).
This plan works, and we now show how to carry it out.

We define the path quasisymmetric function ΞD(x, t) of a digraph D; as its name sug-
gests, it enumerates paths only and not cycles (since for our present purposes we do not
care about enumerating cycles), and it has a definition analogous to that of the chromatic
quasisymmetric function.
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Definition 3. Let D be a digraph whose vertex set V is a subset of P. An ordered path cover
of D is an ordered pair (q, β) such that q is a sequencing of V, β = (β1, . . . , β`) is a composition
of n := |V|, and

q(βi−1 + 1)→ q(βi−1 + 2)→ · · · → q(βi)

is a directed path in D for all i ∈ [`] (adopting the convention that β0 = 0). Define

ΞD(x, t) := ∑
(q,β)

tasc q Mβ (3.4)

where the sum is over all ordered path covers (q, β) of D and asc q is the number of pairs {u, v}
of vertices of D such that

1. either u→ v and v→ u are both edges of D or neither one is,

2. u < v, and

3. v appears later in the sequencing q than u does.

For brevity, we sometimes write ΞD(t) for ΞD(x, t).
Although we are ultimately interested in expansions in terms of monomial symmetric

functions, it turns out that the proofs are more naturally stated in terms of monomial
quasisymmetric functions. So we need to describe the action of ω on monomial quasisym-
metric functions.

Definition 4. The linear map ω on quasisymmetric functions is defined by the following action
on monomial quasisymmetric functions.

ωMβ := (−1)|β| ∑
α≤β

Mα. (3.5)

It is known (e.g., see the proof of [17, Theorem 4.2]) that the usual map ω is character-
ized by the equation ωFα = Fα, so the following proposition confirms that our definition
of ω coincides with the standard one.

Proposition 3. ωFα = Fα.

We are ready for the reciprocity theorem for ΞD(t).

Theorem 2. Let D be a digraph whose vertex set V is a subset of P. Then ωΞD(x, t) = ΞD(x, t).

Theorem 2 gives us a nice combinatorial interpretation of cd,λ(m).

Corollary 1. Let m be a Hessenberg function, and let D(m) denote the digraph on [n] that
has an edge u → v if and only if v ≺ u in P. Then for any composition α whose parts are a
permutation of the parts of λ, cd,λ(m) equals the number of ordered path covers (q, α) of D(m)
with asc q = d.
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4 Betti numbers of regular Hessenberg varieties

The main result of this section is that if H (m, s) is a regular Hessenberg variety and s
has Jordan type λ, then its Betti number β2d equals cd,λ(m).

Tymoczko [19, Theorem 7.1] has already done a lot of the work needed to prove this
result, by showing that Hessenberg varieties admit a paving (or cellular decomposition)
by affine spaces, and obtaining a combinatorial interpretation of the dimensions of the
cells. For regular Hessenberg varieties, Tymoczko’s theorem simplifies as follows. If λ is
an integer partition of n then by a tableau of shape λ we mean any filling of the boxes of
the Young diagram of λ with one copy each of the numbers 1, 2, . . . , n.

Theorem 3 (Tymoczko). Let H (m, s) be a regular Hessenberg variety and let the partition λ

encode the sizes of the Jordan blocks of s. Then H (m, s) is paved by affines. The nonempty cells
are in bijection with tableaux T of shape λ with the property that k appears in the box immediately
to the left of j only if k ≤ mj. The dimension of a nonempty cell is the sum of:

1. the number of pairs i, k in T such that

(a) i and k are in the same row,

(b) i appears somewhere to the left of k,

(c) k < i, and

(d) if j is in the box immediately to the right of k then i ≤ mj;

2. the number of pairs i, k in T such that

(a) i appears in a lower row than k, and

(b) k < i ≤ mk.

It remains for us to establish a correspondence between the combinatorics of Theo-
rem 3 and the combinatorics of ωXG(m)(t), or equivalently (by the results of the previous
section) the combinatorics of ordered path covers.

Definition 5. If X is a topological space and i is an integer, we write βi or βi(X) for the i-th
Betti number dim Hi(X, C) of X.

Theorem 4. Let H (m, s) be a regular Hessenberg variety and let the Jordan type of s be λ.
Then the Betti number β2d of H (m, s) equals cd,λ(m), and βi = 0 for i odd.

Theorem 4 is proved bijectively, by matching up the combinatorics of ordered path
covers with the above combinatorial description by Tymoczko.

Shareshian and Wachs proved palindromicity for the chromatic quasisymmetric func-
tion, so we can now deduce the following palindromicity result for Hessenberg varieties.
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Corollary 2. Let H (m, s) be a regular Hessenberg variety with s of type λ as in Theorem 4. Set

q = qH (m,s) := ∑
i∈Z

βiti−|m|.

Then q(t) = q(t−1).

This concludes the combinatorial portion of our proof. At this point in the full version
of the paper, we continue with the geometric portion of the proof, but in this extended
abstract, we do not have the space to say anything about the geometric portion beyond
what we already sketched in the introduction.
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